Developing 3rd Grade Children's 3D Visualization and Numeration Skills using Intuitively Accessible Models

Realistic Mathematics Education (RME)

Irma Vazquez

3rd Grade Teacher Wharton K-8 Dual Language Academy ivazquez@houstonisd.org

Jacqueline Sack

Associate Professor Department of Urban Education University of Houston Downtown sackj@uhd.edu

Developing 3rd Grade Children's 3D Visualization and Numeration Skills using Intuitively Accessible Models

Irma Vazquez

3rd Grade Teacher Wharton K-8 Dual Language Academy ivazquez@houstonisd.org

Jacqueline Sack

Associate Professor Department of Urban Education University of Houston Downtown sackj@uhd.edu

Realistic Mathematics Education (RME)

Mathematics is a human activity

Opportunities for students to "re-invent" mathematics through active participation in the learning process

Horizontal mathematization: Students come up with the mathematical tools to organize and solve problems located in real-life situations

Vertical mathematization: Finding shortcuts, discovering connections and applying these to new situations in increasingly more abstract ways

3D Visualization – Grade 3

Issues:

- Making sense of what is hidden in 2D pictures of 3D objects (Battista, 1999)
- Drawing meaningful representations of 3D objects, such as rectangular prisms (Outhred & Mitchelmore, 2002)
- Making sense of plan views and of top/side/front views

Instructional Perspective:

• "Low floor; high ceiling" (Boaler, 2014)

Program Context

School

Classroom

Children

Research: 7 years plus 2

Pre-Interview Observations

Pre-Interview Observations

Spatial Operational Capacity Framework (Sack, & Van Niekerk, 2009)

Soma Figures

Two-Soma Assemblies (2D to 3D)

Two-Soma Assemblies (2D to 3D)

Somas #2; #1

Somas #3; #4 OR Somas #5; #7

Somas #1; #2 OR Somas #2; #3 OR Somas #5; #1 OR Somas #6; #1 OR ...

Geocadabra Construction Box

How many cubes in this structure?

Figure 4. Task 1f

Videos: GB3MS2 (Mar 10 2009) KM3MES4 (Nov 8 2010) M_3FSE5 (Nov 11 2010) start at 2'00"

Create Your Own Task Cards

Two-Soma assemblies (Challenge your friends to see if they can figure out which two Soma figures you used)

Create Your Own Task Cards

Two-Soma assemblies (Challenge your friends to see if they can figure out which two Soma figures you used)

Making sense of top, side front views

2. Side view

Create Your Own Task Cards

Create a symmetrical figure with 24 cubes (Challenge your friends to see if they can build your figure based only on reading your numeric plan view)

Representing 24-cube prisms

How many cubes?

ase es 4 ves cuts les

How many cubes?

20-7 = 63

Cake design . . .

Permutations

5GF3E

Cake design

3D Visualization – Grades 3-16

Issues:

- Making sense of what is hidden in 2D pictures of 3D objects (Battista, 1999)
- Drawing meaningful representations of 3D objects, such as rectangular prisms (Outhred & Mitchelmore, 2002)
- Making sense of plan views and of top/side/front views

Instructional Perspective:

- "Low floor; high ceiling" (Boaler, 2014)
- Common Core Geometry . . . ?