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What does it mean to understand mathematics? Thinking
about a response to this question leads to additional, relgted
questions such as: What is mathematics? What is understanding?
What does it mean to learn mathematics with understanding? The
Standards for Mathematical Practice, as articulated in the
Common Core Standards for School Mathematics (CCSSM,
Common Core State Standards Initiative, 2010), outline more than
instructional objectives. In many ways, the Standards for
Mathematical Practice describe mathematics and what it means to
do mathematics. The purpose of this article is to describe how two
perspectives on the Standards for Mathematical Practice can be
used to support how teachers assess students. Even though these
principles can be used across all grade levels, the examples given
in this article focus on assessment in elementary mathematics.
Before the discussion of these two perspectives on assessment, I
offer a personal account of how I used Standards to inform,
affirm, and reveal the purpose and practice of classroom

assessment. _
Several years into my teaching career, the NCIM

Curriculum and Evaluation Standards (1989) gave urgency and
license to mathematics teachers to engage students in important
mathematics that was relevant, authentic, and meaningful. The
Standards had an influence on how 1 assessed students as I began
to incorporate projects, labs, and problem solving into classroom
activities which I also viewed as summative assessments. I also
began to dabble with problem contexts in the selection and degign
of problem solving activities. What I recall vividly at that time
was the students’ response. Even though the assessments were
more complex and challenging, students expressed gengine
interest in these opportunities to showcase their skills, reasoning,
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and understanding of relationships between problem contexts and
mathematics.

I found students were willing to commit additional
intellectual effort to mathematical problem solving. This was true
among students regardless of their differences in identified
learning challenges as expressed in their IEPs (i.e., Individualized
Education Programs) or their fluency with English. The positive
response from students affirmed the somewhat risky choices I
made with instruction and assessment, which changed my
perspective on what students were capable of accomplishing and
what it meant to do mathematics. Even though the accountability
landscape was different then compared to today, the influence of a
multi-faceted interpretation of assessment on my own classroom
practice and conceptions of the purpose of classroom assessment
was profound. Without question, the NCTM Standards influenced
my teaching and what my students learned.

Of the four purposes for classroom assessment articulated
in the NCTM Assessment Standards (1995) — monitoring student
progress, making instructional decisions, evaluating students’
achievement, and evaluating programs — the first two relate
directly to aspects of teacher planning, interpretation, and decision
making that are often characterized in descriptions of formative
assessment (Black & Wiliam, 1998; Black et al., 2003). And so, I
confess that during this time of experimentation and change in my
classroom practice, assessment as I understood it was something
that was scored and graded (Wilson, 1994). My assessment
practices were represented by my choice and use of summative
assessments. And yet, as argued by Norman Webb (1992), «.. test
results are generally given as a single score or a profile of scores.
It is difficult, using only numerical scores, to describe how a
student draws relationships between different mathematical
concepts... or how a student goes about solving a problem” (p.
663). It wasn’t until much later that I was increasingly drawn to
understanding methods of monitoring student progress and the
role of assessment in informing instruction. These more formative
purposes for assessment are the foundation for the following
discussion of two perspectives for classroom assessment — in
particular, the critical roles of representation and reasoning in
assessing students’ understanding of mathematics.
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Standards for Mathematical Practice

Two perspectives on assessment are discussed here:
mathematical reasoning and mathematical representations. They
are articulated in various ways in the CCSSM Standards for
Mathematical Practice (SMP; CCSSI, 2010). Mathematical
reasoning involves thinking about the world and problems in ways
that involve numeracy, spatial relationships, patterns, and
generalization, and the like. As an example, problem solving often
involves mental processes in which mathematically useful features
of a problem are identified and related to visual and numerical
aspects of the situation. Connections to prior knowledge can lead
to further abstraction and idealization of the problem. If needed,
additional related strategies can be invoked to pursue a solution.
Consider how reasoning is reflected in the following list of SMPs:

1. Make sense of problems and persevere in solving them

2. Reason abstractly and quantitatively

3. Construct viable arguments and critique the reasoning
of others
Model with mathematics
Use appropriate tools strategically
Attend to precision
Look for and make use of structure

8. Look for and express regularity in repeated reasoning
Of course, one could say all of these SMPs involve reasoning
since each one involves mathematical processes or habits of mind.
Constructing viable arguments involves communicating to others,
considering your audience, and focusing on the mathematical
ideas that need to be shared. The use of appropriate tools,
contrast, is often a more individual undertaking that involves
interpreting a problem and recognizing the related strategies that
could be used to solve the problem. Indeed, all SMPs involve
mathematical reasoning but they have different demands on social
and cognitive processes.

From the perspective of mathematical representations
particular SMPs become much more prominent. For example,
“looking for and making use of structure” can involve visual,
numerical and symbolic representations that lead to new
representations. Representations of patterns and generalization are

Noawn e
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also at the heart of ways to “look for and express regularity in
repea?ed reasoning.” As shown in Figure 1 below, in order to find
96 minus 67 mathematical representations can involve a diagram
for a problem context (modeling), use of a mathematical tool such
as an empty number line (appropriate tools), and the proposition
of a numerical/visual strategy that relates the number line to a
computation strategy (use of structure).

Sam has 67 marbles. He finds some more in the closet.
Now Sam has 96 marbles.

How many marbles did Sam find in the closet?

96 - 67 > 97 -67=30
97-9%6= 1

S096-67= 30—-1= 29

Figure 1: Representations for subtraction

Knowing the various ways in which students create and
use representations is also fundamental to assessment.
Representations reveal how students think about a situation
mathematically. Representations are abstractions of problem
contexts, and they also build upon and connect to other
mathematics. Therefore, to assess students’ mathematical rea-
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soning it is important to be aware of the various representations
students use. Instructionally, representations are also used to
support student learning of fundamental concepts in mathe?matics,
and these intersections between instruction and learning are
important sites for formative assessment. To interpret student
responses to instructional activities and assessment, teachers negd
to understand how the mathematical content demonstrated in
students’ representations relate to research-based emergent models
of how student learning of mathematics develops over time.

Assessment Pyramid: .
A Model for Balancing Mathematical Reasoning

To portray the range of reasoning that should be assessed
over time in mathematics classes, researchers at the Freudenthal
Institute developed the Dutch Assessment Pyramid in 1‘995 which
was later adapted by Shafer and Foster (1997) for use m research
studies in the United States (see Figure 2).
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Figure 2: Dutch Assessment Pyramid (adapted from Shafer &
Foster, 1997, p. 3).
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The relative distribution for the different levels of thinking —
recall, connections, and analysis — illustrates that even though
recall tasks still form the majority of assessment questions that
will be used, they cannot be the only type of task that is used to
assess student understanding. Teachers need to move beyond
questions designed to assess student recall. They need to include
tasks that allow students to show that they can make connections
between contexts - and mathematics (i.e., modeling, abstract
reasoning), communicate their reasoning (i.e., argumentation), and
propose general relationships and expressions for patterns. Those
familiar with the Programme for International Student Assessment
(PISA) may recognize these three “levels of thinking” as the
mathematics competencies outlined in the PISA mathematics
framework (OECD, 2010).

Recall: The type of thinking represented at this level
involves the recall of practiced knowledge and skills. This level
deals with knowing facts, recalling mathematical objects and
properties, performing routine procedures, applying standard
algorithms, and operating with statements and expressions
containing symbols and formulas in “standard” form. These tasks
are quite familiar, as they are the most commonly used tasks on
standardized assessments and tend to be the types of tasks that are
more easily created for classroom assessment.

Connections: The type of reasoning for this level involves
connections within and between the different domains in
mathematics. This type of reasoning also involves handling
different representations according to situation and purpose.
Students need to be able to distinguish and relate a variety of
statements. Tasks that elicit this type of reasoning are often placed
within a context and engage students in mathematical decisions
where they might need to choose from various strategies and
mathematical tools in order to solve problems. Therefore, tasks
eliciting reasoning at this level are often open to a range of
representations and solution strategies.

Analysis: Reasoning at this level is elicited when students
are asked to mathematize situations—that is, to recognize and
extract the mathematics embedded in the situation and use
mathematics to solve the problem. This includes analysis that
requires interpretation of a situation and the development of new
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models and strategies, mathematical conjectures, and general-
izations. Problems at this level reveal students’ abilities to plan
solution strategies and implement them in less familiar problem
settings that may contain more elements than those in the
connections cluster. Other ways in which reasoning of this type
are elicited are through the use of open tasks, tasks that are so
open they require students to make assumptions to put boundaries
around the task so that it is solvable.

The other two dimensions of the pyramid include the
domains of K-5 mathematics as suggested by the CCSSM, and the
difficulty of tasks and questions used for assessment. The
dimensions of mathematics are meant to convey that all content
domains should be included in a comprehensive approach to
classroom assessment. Even though numeracy receives significant
emphasis in grades K to 5, students should also have opportunities
to engage in early algebraic reasoning, measurement, and the
interpretation of data.

Lastly, it is worth noting an important distinction between
“levels of thinking” and the difficulty of “questions posed.”
Questions that involve recall (Level I) can be easy or difficult. In
fact, some Level I questions can be more difficult than Level 1T or
III questions. Just because questions may require recall only does
not mean they are any less difficult than a question that requires
the choice of an appropriate strategy. Level II and I1I reasoning is
not necessarily more difficult. It is a different type of reasoning.
To describe this in a different way, a question that might involve
mathematizing an unfamiliar problem context (Level 1II) may be
casier for students than a multi-digit division problem that requires
many steps and, therefore, many opportunities to make com-
putation errors (Level D).

Tasks to Assess Student Reasoning Beyond Recall

To further illustrate the different types of reasoning
reflected in an assessment pyramid for elementary mathematics,
several tasks are discussed in this section. As you review these
examples, and your own assessment tasks, consider the student
reasoning that could be elicited for your students (or hypothetical
groups of students at different grade levels).
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In Figure 3, a partial hundreds chart is given with several
blank. spaces. Even though a hundreds chart is used to support
counting, skip counting, order, and operations in carly elementary
grades, it can also can be used to assess how students understand
place value, order, and how a hundreds chart is organized. The
ways in which students complete the chart will be more indicative
of their understanding than the numbers they write in the empty
boxes: Do students need to count through (or tap) all of the
missing numbers to complete the numbers up to 31?7 Are students
ablg to.work vertically to find 12 and 21? For a student who is just
beginning to use a hundreds chart, the reasoning elicited may best
fit Level II (making connections, choosing an appropriate
strategy). For students who are quite familiar with the hundreds
chart and related extensions through classroom activities, this task
would assess recall of procedures.

Pgrt of this hundreds chart is torn off.
Five numbers are missing.

Fill in the boxes with the five missing numbers.

112 4 15
11 13114

22
31

Figure 3. Reasoning about Structure of Number

.In Figure 4, part of a rectangular array of tiles in a parking
space is hidden by a car. This is a task that could be used with
students in Grade 2 or 3 as they transition from direct counting to
the use of typical representations, such as arrays, to solve
multiplication tasks. Although there are connections to measure-
ment concepts, the primary process being assessed is whether
smdepts count, skip count, or multiply to find the total number of
tiles in an array. As with the hundreds chart task, particular focus
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should be given to how students respond to the task in addition to
the answer they give to this question.

How many tiles were used to make this parking space?

Figure 4. Bliciting New Strategies for Computation

With respect to levels of thinking in the pyramid, a student
who is just beginning to explore multiplication may need to count
all of the tiles. This reflects Level I reasoning (recall, counting
processes). However, a student who notices there are eight groups
of three (or visa versa), or chunks the tiles into 15 + 9 (or some
related combination) would be demonstrating at least Level II
reasoning (making connections between addition, grouping, and
multiplication). For similar tasks with larger arrays that are less
accessible to counting strategies, some students may develop
conjectures about multiplication strategies or even invent other
strategies involving combinations of skip counting and grouping
(Level 111, generalization).

The prompt and the series of related questions in Figure 5
assess students’ relational reasoning with multiplication facts. The
three multiplication problems that are given are organized in a
way to promote inductive reasoning with a sequence of problems
in which the answers are already provided. The three questions
that follow can all be answered using information from the set of
questions and answers.

In Figure 5, students who choose to subtract 13 from 338
to find the answer to (a) and add 13 to 390 to find the answer to
part (c) demonstrates Level II reasoning, since they are
strategically relating the given information to the problems that
follow.
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On a chalkboard is the foliowing list of math problems:

13X 26 =338
14 X 26 = 364
15 X 26 =380

What are the answers to the following problems?
a) 16X 26 =
b) 2600 X 14 =

¢) 12X 26 =

Figure 5: Assessing Relational Reasoning

What may be surprising to some is that if students use the
sFandard algorithm for multiplication to find the answers, they are
simply demonstrating recall of procedures (Level I). Once again,
the students’ strategies are more revealing of the level of thinking
elicited than whether or not the answers are correct. While correct
answers are certainly important, if mathematical reasoning is
valged and included as part of classroom assessment practices,
asking students how they find those answers is critical for
determining the reasoning elicited. This leads to further con-
sideration of how instructional practices influence how students
choose to answer these questions. If the standard algorithm is
promoted at the expense of other appropriate strategies, students
will be less likely to take risks and will be less likely to apply the
patterns they see in written or verbally administered assessments.

_ To conclude this section, Figure 6 showcases a task that
involves two multiplication problems with the same answer. In
this problem the answer is not given, although for upper
elementary students (i.e., Grade 4 or 5) finding 8 x 40 should not
be too difficult. In this task students are asked to find two more
multiplication problems that have the same answer. Certainly,
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some students might take advantage of the “give away” problem
and write 1 x 320. This would then lead to a related second
problem, 2 x 160. However, even though this seems to be an easy
solution path, students who choose this approach may recognize
that 2 x 160 looks similar to 16 x 20, leading them to contemplate
why those two problems must be equal (Level II). This approach
could also lead to related conjectures that could be explored
further with other multiplication sequences (Level III).

Here are two multiplication cards that have the same answer.

16x20 8 X 40

Find two other multiplication problems that have the same answer
as these two cards.

Figure 6: Extending Relational Reasoning

Another expected response, perhaps more common, would
be for students to notice that as one factor is halved, the other
factor is doubled. This insight could be further extended to
identify other products such as 4 x 80 and 2 x 160 (or in the other
direction, 32 x 10 and 64 x 5). Assuming students do not regularly
practice these types of problems, these methods demonstrate
reasoning that is at least Level II (making connections) or even
Level 111 (generalization, new strategies).

Mathematical Representations and the Iceberg Model

To interpret, promote, and assess student reasoning, .it 18
important to be able to recognize the role different representations
play. Learning mathematics in the elementary grades often
involves students making sense of representations that range from
concrete supports for counting, to intermediary models that
support computation, to standard algorithms that convey structure
in more abbreviated forms. Instructional materials designed for
primary grades mathematics often include a multitude of
representations and strategies that can be used to convey concepts
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and skills. However, the instructional value of representations can
vary, from modeling a specific problem to modeling a host of
situations involving similar processes. For instance, a visual or
diagram for a problem can focus students on the specific
mathematical goals for the problem, and can serve as a scaffold
for language and/or mathematical demands. In this case the
representation is useful, but only for a specific task. More broad
reaching representations include ten frames, number grids, beaded
number lines, rekenreks, empty number lines, and so on.

Progressive formalization, an instructional design approach
that draws from decades of developmental research using
principles of Realistic Mathematics Education (RME; van den
Heuvel-Panhuizen, 2001), suggests that learners should access
mathematical concepts initially by relating their informal
reasoning about problem contexts to more structured, pre-formal
models, strategies, and representations for solving problems (e.g.
array models for multiplying fractions, ratio tables for proportions,
percent bars for solving percent problems, combination charts for
solving systems of equations, etc.).

The Iceberg Model is a visual metaphor that illustrates
enacted features of progressive formalization through informal,
pre-formal, and formal representations (see Figure 7). The iceberg
consists of the “tip of the iceberg” and a much larger area below
the surface, designated the “floating capacity.” The top of the
iceberg represents the formal procedure or symbolic repre-
sentation of interest. However, before this formal level is reached,
students should have an opportunity to engage in informal
reasoning and use pre-formal representations.

Informal reasoning: Students’ experiences with real or
imaginary contexts are often the basis for informal mathematical
reasoning. The iceberg model in Figure 7 illustrates some contexts
that could inspire students’ informal reasoning about two-digit
multiplication. A mathematical context would be the approach of
multiplication as repeated addition. Even though this pre-cursor to
multiplication does not represent multiplicative reasoning (Clark
& Kamii, 1996), it is a common approach for students to use
before they transition to grouping strategies. Students’ encounters
with computing with money, dice, or other objects with associated
value are opportunities for students to consider groupings and
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ways to coordinate, skip-counting, number facts, and rpulti-
plication. For example, a stack of 18 quarters might lead a child to
think about grouping coins by fours (dollars) or tens ($2.50), and
the relationship between known groupings and multiplication.
Informal reasoning tends to be bound to specific contexts, but can
lead to other ways to structure mathematics problems.

"\ Two-digit multplication

Hx10=200
20 x 8 =180
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Figure 7: Iceberg Model for Two-Digit Multiplication

Pre-formal representations and strategies:‘ Pre-formal
representations build on students’ informal representations, or rea-
soning, and offer greater mathematical structure that can bg used
across many problem contexts. Some examples included in the
iceberg for multiplication include: making consistently-sized
groups to support multiplication (e.g., seating arrqngements),
using base ten blocks and various related models, using an area
model to illustrate the structure of two-digit numbers and related
products, and the related use of partial produgts, as anoth;r
example of how the distributive property is applied with multi-
digit multiplication. While the seating arrangement may be more
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accurately placed between informal and pre-formal sections of the
iceberg model, the other three models are more meaningful
approaches to support student understanding of the standard
algorithm for two-digit multiplication. As noted by Webb,
Boswinkel, and Dekker (2008),
Most pre-formal representations are rarely developed by
students on their own to solve a problem. Instead, students are
guided by teachers or instructional materials to use pre-formal
representations and strategies that can be applied across many
situations and contexts. Pre-formal representations offer
greater opportunities to empower students’ sense-making, but
they often have limitations in the scope of problems that can
be solved using the chosen representation (p. 112).
Informal and pre-formal representations play a fundamental role in
the development of student understanding of formal mathematics.
When the “floating capacity” of the iceberg is bypassed to
expedite instruction of formal mathematical goals, students are left
with limited opportunities to make sense of why these formal
representations work. While other curricular demands and
limitations of time may restrict the representations that one might
introduce to students, even the consideration of trade-offs between
including or excluding specific representations in mathematics
instruction will support more informed instructional decisions and
formative assessment.

The Iceberg Model and Formative Assessment

Through careful attention to students’ prior knowledge,
expected informal strategies, and known pre-formal models,
teachers can select and adapt assessment tasks that are more likely
to elicit representations that are accessible to students. Progressive
formalization serves as a principle for organizing instruction and
assessment so that student responses can be interpreted with
respect to how student learning for a given mathematical domain
is developed over time. Subsequent prompts, scaffolds,
representations, and questions are informed by how student
responses relate to other relevant strategies and representations,
and proposed instructional sequences.

When appropriate, teachers can adapt instruction to build
upon students’ less formal representations by either drawing upon
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strategies by other students in the classroom that are progressively
more formal, or introducing the students to new pre-formal
strategies and models. Because pre-formal models are usually
more accessible to students who struggle with formal algorithms,
they are encouraged to refer back to the less formal repre-
sentations when needed to deepen their understanding of a
procedure or concept.

Teacher educators and researchers who have investigated
formative assessment have characterized this practice as a re-
sponse to these three questions:

e Where are they going?

e Where are they now?

e How will I help them get there?
The first question relates to goal setting and curriculum, and
includes content and process goals established by the state,
district, or school. The second question relates to knowing “where
students are” at the moment which requires some combination of
observing and listening to student responses and interpreting those
responses — i.e., assessment. The most challenging question to
answer is the third. How will you help students move from their
current understandings of mathematics to be able to demonstrate
established mathematical goals? One of the reasons for thinking
about assessment from the perspective of mathematical repre-
sentations is that it provides potential instructional pathways that
are based on student responses and hypothetical learning
trajectories (Simon & Tzur, 2004; Clements & Sarama, 2004).

Intersections Between the Pyramid and Iceberg Models

Teachers who have used these two models to inform the
design and use of assessment have noticed a relationship between
the upper levels of the pyramid and the floating capacity of
representations below the water line in the iceberg. To selgct,
adapt, and design assessment tasks that are open to student choice
of solution strategy, one has to be mindful of the various solution
strategies that are possible. To emphasize further, the choice of
assessment tasks is informed by knowledge of the expected student
responses that could be elicited. Knowledge of representatiqns for
a given mathematics topic leads to better selection and design of
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assessment tasks that assess reasoning beyond recall. On the other
hand, the recall of skills and procedures reflected in the base of the
assessment pyramid are, more often, the facts, algorithms, and
procedures that are the formal mathematical goals at the tip of the
iceberg.

A comprehensive approach to mathematical reasoning in
classroom assessment, therefore, needs to take into account the
representational pathways that lead to student understanding of the
formal mathematical goals. Of course, the formal goals are not the
only instructional objectives that are worth assessing. The manner
in which students choose and use representations and models
demonstrates a deeper understanding of mathematics than might
be portrayed in responses that reflect only recall of skills and
procedures.

Closing Thoughts

Reasoning and representation are complementary
perspectives that inform the assessment of the CCSSM Standards
for Mathematical Practice. Students first encounter mathematics as
they make sense of their world. Later, in school, they are
introduced to problems that require use of more structured
representations and strategies to advance their knowledge and
understanding of mathematics. Classroom assessment practices
that are consistent with how students learn mathematics present
certain challenges, but support mathematical reasoning that is
more generative, productive, and enduring.

One challenge to incorporating assessment practices that
utilize these dual perspectives is the need to develop one’s
knowledge of the mathematical terrain. What are the models and
strategies that represent the “floating capacity” for various
mathematics topics? While there are many instructional resources
and professional development materials that outline useful models
and strategies, being able to articulate the pros and cons for each
of these representations takes years of classroom experience.

Prior experiences with teachers in assessment-related
professional development activities using the assessment pyramid
(e.g., Webb et al., 2004) and the iceberg model (Webb, Boswinkel
& Dekker, 2008), have shown that developing an iceberg of
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representations and discussing various options for good
assessment tasks is best accomplished with the collective insight
and support of colleagues. As we observed first hand over a
decade ago, teachers who collaborate to adapt and design
questions that assess more than recall promote ongoing
professional discussion and deliberation of the essential concepts
and mathematical connections that are at the intersection of
teaching and learning. This type of collaboration should continue
as teachers share student work and negotiate how students’
responses illustrate tentative claims about student understanding
of mathematics as well as features of task design that support or
constrain student expression.

As you review the assessment tasks you use with your
students and analyze the extent to which they “fill the pyramid,”
you will identify opportunities to include questions that elicit
reasoning beyond recall. As you begin to shift to greater use of
Level II and III tasks, other forms of student reasoning will be
revealed and should lead to instruction that is more consistent with
student understandings. When there appears to be a gap between
where students are now and where you want them to go, consider
how different problem contexts and pre-formal representations
might, respectively, provide more accessible anchors and
illustrative connections that have lead to an understanding of
formal mathematics that makes sense. While there is much to
learn, there is much that can be learned when we use assessment
to open up windows into students’ mathematical reasoning.
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